Database verification studies of SWISS-PROT and GenBank

نویسندگان

  • Peter D. Karp
  • Suzanne M. Paley
  • Jingchun Zhu
چکیده

PROBLEM STATEMENT We have studied the relationships among SWISS-PROT, TrEMBL, and GenBank with two goals. First is to determine whether users can reliably identify those proteins in SWISS-PROT whose functions were determined experimentally, as opposed to proteins whose functions were predicted computationally. If this information was present in reasonable quantities, it would allow researchers to decrease the propagation of incorrect function predictions during sequence annotation, and to assemble training sets for developing the next generation of sequence-analysis algorithms. Second is to assess the consistency between translated GenBank sequences and sequences in SWISS-PROT and TrEMBL. RESULTS (1) Contrary to claims by the SWISS-PROT authors, we conclude that SWISS-PROT does not identify a significant number of experimentally characterized proteins. (2) SWISS-PROT is more incomplete than we expected in that version 38.0 from July 1999 lacks many proteins from the full genomes of important organisms that were sequenced years earlier. (3) Even if we combine SWISS-PROT and TrEMBL, some sequences from the full genomes are missing from the combined dataset. (4) In many cases, translated GenBank genes do not exactly match the corresponding SWISS-PROT sequences, for reasons that include missing or removed methionines, differing translation start positions, individual amino-acid differences, and inclusion of sequence data from multiple sequencing projects. For example, results show that for Escherichia coli, 80.6% of the proteins in the GenBank entry for the complete genome have identical sequence matches with SWISS-PROT/TrEMBL sequences, 13.4% have exact substring matches, and matches for 4.1% can be found using BLAST search; the remaining 2.0% of E.coli protein sequences (most of which are ORFs) have no clear matches to SWISS-PROT/TrEMBL. Although many of these differences can be explained by the complexity of the DB, and by the curation processes used to create it, the scale of the differences is notable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Technical comment to "Database verification studies of SWISS-PROT and GenBank" by Karp et al

In their paper “Database verification studies of SWISSPROT and GenBank” Karp et al. (2001) conclude: (1) “SWISS-PROT is more incomplete than we expected. . . ”; (2) “Even if we combine SWISS-PROT and TrEMBL, some sequences from the full genomes are missing from the combined dataset”; (3) “In many cases, translated GenBank genes do not exactly match the corresponding SWISS-PROT sequences, . . . ...

متن کامل

The European Bioinformatics Institute (EBI) databases

This paper describes the databases and services of the European Bioinformatics Institute (EBI). In collaboration with DDBJ and GenBank/NCBI, the EBI maintains and distributes the EMBL Nucleotide Sequence Database, Europe's primary nucleotide sequence data resource. The EBI also maintains and distributes the SWISS-PROT Protein Sequence Database, in collaboration with Amos Bairoch of the Universi...

متن کامل

Object-oriented parsing of biological databases with Python

MOTIVATION While database activities in the biological area are increasing rapidly, rather little is done in the area of parsing them in a simple and object-oriented way. RESULTS We present here an elegant, simple yet powerful way of parsing biological flat-file databases. We have taken EMBL, SWISSPROT and GENBANK as examples. EMBL and SWISS-PROT do not differ much in the format structure. GE...

متن کامل

Challenges in Integrating Biological Data Sources

Scientific data of importance to biologists reside in a number of different data sources, such as GenBank, GSDB, SWISS-PROT, EMBL, and OMIM, among many others. Some of these data sources are conventional databases implemented using database management systems (DBMSs) and others are structured files maintained in a number of different formats (e.g., ASN.1 and ACE). In addition, software packages...

متن کامل

Biomedical Named Entity Recognition: A Survey of Machine-Learning Tools

It is well known that the rapid growth and dissemination of the Internet has resulted in huge amounts of information generated and shared, available in the form of textual data, images, videos or sounds. This overwhelming surge of data is also true for specific areas such as biomedicine, where the number of published documents, such as articles, books and technical reports, is increasing expone...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 17 6  شماره 

صفحات  -

تاریخ انتشار 2001